Why segmentation matters: Experience-driven segmentation errors impair "morpheme" learning.

نویسندگان

  • Amy S Finn
  • Carla L Hudson Kam
چکیده

We ask whether an adult learner's knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners' ability to segment words into their component morphemes and learn phonologically triggered variation of morphemes. We find that learning is impaired when words and component morphemes are structured to conflict with a learner's native-language phonotactic system, but not when native-language phonotactics do not conflict with morpheme boundaries in the artificial language. A learner's native-language knowledge can therefore have a cascading impact affecting word segmentation and the morphological variation that relies upon proper segmentation. These results show that getting word segmentation right early in learning is deeply important for learning other aspects of language, even those (morphology) that are known to pose a great difficulty for adult language learners.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of segmentation and redundancy methods on cognitive load and vocabulary learning and comprehension of English lessons in a multimedia learning environment

The present study was conducted with the aim of the effects of segmentation and redundancy methods on cognitive load and vocabulary learning and comprehension of English lessons in a multimedia learning environment.The purpose of this study is an applied research and a real experimental study. The statistical population of the present study includes all people aged 14 to 16 who are enrolled in ...

متن کامل

A semi-supervised learning approach for morpheme segmentation for an Arabic dialect

We present a semi-supervised learning approach which utilizes a heuristic model for learning morpheme segmentation for Arabic dialects. We evaluate our approach by applying morpheme segmentation to the training data of a statistical machine translation (SMT) system. Experiments show that our approach is less sensitive to the availability of annotated stems than a previous rule-based approach an...

متن کامل

Unsupervised Bilingual Morpheme Segmentation and Alignment with Context-rich Hidden Semi-Markov Models

This paper describes an unsupervised dynamic graphical model for morphological segmentation and bilingual morpheme alignment for statistical machine translation. The model extends Hidden Semi-Markov chain models by using factored output nodes and special structures for its conditional probability distributions. It relies on morpho-syntactic and lexical source-side information (part-of-speech, m...

متن کامل

Morpheme Segmentation and Concatenation Approaches for Uyghur LVCSR

In this paper, various kinds of sub-word lexica are thoroughly investigated under the framework of Uyghur LVCSR system. Experimental results show that it is inefficient to directly model based on word units or small units like morpheme or even syllable units. It is observed that an optimal sub-word unit set between word and morpheme units can better fit for ASR system. In order to select best u...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental psychology. Learning, memory, and cognition

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2015